Answers for "return values to diffrent rows in pandas"

3

select rows which entries equals one of the values pandas

In[10]: df
Name     Amount
---------------
Alice       100
Bob          50
Charlie     200
Alice        30
Charlie      10

In [11]: df['Name'].isin(['Alice', 'Bob'])
Out[11]: 
0     True
1     True
2    False
3     True
4    False
Name: Name, dtype: bool

In [12]: df[df.Name.isin(['Alice', 'Bob'])]
Out[12]: 
    Name  Amount
0  Alice     100
1    Bob      50
3  Alice      30
Posted by: Guest on February-14-2021
1

Select rows from a DataFrame based on column values?

#To select rows whose column value equals a scalar, some_value, use ==:
df.loc[df['A'] == 'foo']

#To select rows whose column value is in an iterable, some_values, use isin:
df.loc[df['B'].isin(['one','three'])]

#Combine multiple conditions with &:
df.loc[(df['column_name'] >= A) & (df['column_name'] <= B)]
Posted by: Guest on November-23-2021

Code answers related to "return values to diffrent rows in pandas"

Python Answers by Framework

Browse Popular Code Answers by Language