plotting confusion matrix
from sklearn.metrics import confusion_matrix
matrix_confusion = confusion_matrix(y_test, y_pred)
sns.heatmap(matrix_confusion, square=True, annot=True, cmap='Blues', fmt='d', cbar=False
plotting confusion matrix
from sklearn.metrics import confusion_matrix
matrix_confusion = confusion_matrix(y_test, y_pred)
sns.heatmap(matrix_confusion, square=True, annot=True, cmap='Blues', fmt='d', cbar=False
compute confusion matrix using python
import numpy as np
currentDataClass = [1, 3, 3, 2, 5, 5, 3, 2, 1, 4, 3, 2, 1, 1, 2]
predictedClass = [1, 2, 3, 4, 2, 3, 3, 2, 1, 2, 3, 1, 5, 1, 1]
def comp_confmat(actual, predicted):
classes = np.unique(actual) # extract the different classes
matrix = np.zeros((len(classes), len(classes))) # initialize the confusion matrix with zeros
for i in range(len(classes)):
for j in range(len(classes)):
matrix[i, j] = np.sum((actual == classes[i]) & (predicted == classes[j]))
return matrix
comp_confmat(currentDataClass, predictedClass)
array([[3., 0., 0., 0., 1.],
[2., 1., 0., 1., 0.],
[0., 1., 3., 0., 0.],
[0., 1., 0., 0., 0.],
[0., 1., 1., 0., 0.]])
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us