Answers for "pandas drop row that contains value"

4

pandas drop rows with value in list

import pandas as pd

a = ['2015-01-01' , '2015-02-01']

df = pd.DataFrame(data={'date':['2015-01-01' , '2015-02-01', '2015-03-01' , '2015-04-01', '2015-05-01' , '2015-06-01']})

print(df)
#         date
#0  2015-01-01
#1  2015-02-01
#2  2015-03-01
#3  2015-04-01
#4  2015-05-01
#5  2015-06-01

df = df[~df['date'].isin(a)]

print(df)
#         date
#2  2015-03-01
#3  2015-04-01
#4  2015-05-01
#5  2015-06-01
Posted by: Guest on July-14-2020
0

remove rows if not matching with value in df

# Quick Examples

#Using drop() to delete rows based on column value
df.drop(df[df['Fee'] >= 24000].index, inplace = True)

# Remove rows
df2 = df[df.Fee >= 24000]

# If you have space in column name
# Specify column name with in single quotes
df2 = df[df['column name']]

# Using loc
df2 = df.loc[df["Fee"] >= 24000 ]

# Delect rows based on multiple column value
df2 = df[ (df['Fee'] >= 22000) & (df['Discount'] == 2300)]

# Drop rows with None/NaN
df2 = df[df.Discount.notnull()]
Posted by: Guest on December-23-2021

Code answers related to "pandas drop row that contains value"

Python Answers by Framework

Browse Popular Code Answers by Language