Answers for "0-1 knapsack problem"

C++
1

python 0-1 kanpsack

#Returns the maximum value that can be stored by the bag

def knapSack(W, wt, val, n):
   # initial conditions
   if n == 0 or W == 0 :
      return 0
   # If weight is higher than capacity then it is not included
   if (wt[n-1] > W):
      return knapSack(W, wt, val, n-1)
   # return either nth item being included or not
   else:
      return max(val[n-1] + knapSack(W-wt[n-1], wt, val, n-1),
         knapSack(W, wt, val, n-1))
# To test above function
val = [50,100,150,200]
wt = [8,16,32,40]
W = 64
n = len(val)
print (knapSack(W, wt, val, n))
Posted by: Guest on November-24-2020
1

knapsack

#include<bits/stdc++.h>
using namespace std;
vector<pair<int,int> >a;
//dp table is full of zeros
int n,s,dp[1002][1002];
void ini(){
    for(int i=0;i<1002;i++)
        for(int j=0;j<1002;j++)
            dp[i][j]=-1;
}
int f(int x,int b){
	//base solution
	if(x>=n or b<=0)return 0;
	//if we calculate this before, we just return the answer (value diferente of 0)
	if(dp[x][b]!=-1)return dp[x][b];
	//calculate de answer for x (position) and b(empty space in knapsack)
	//we get max between take it or not and element, this gonna calculate all the
	//posible combinations, with dp we won't calculate what is already calculated.
	return dp[x][b]=max(f(x+1,b),b-a[x].second>=0?f(x+1,b-a[x].second)+a[x].first:INT_MIN);
}
int main(){
	//fast scan and print
	ios_base::sync_with_stdio(0);cin.tie(0);
	//we obtain quantity of elements and size of knapsack
	cin>>n>>s;
	a.resize(n);
	//we get value of elements
	for(int i=0;i<n;i++)
		cin>>a[i].first;
	//we get size of elements
	for(int i=0;i<n;i++)
		cin>>a[i].second;
	//initialize dp table
	ini();
	//print answer
	cout<<f(0,s);
	return 0;
}
Posted by: Guest on May-03-2020
0

0-1 knapsack problem

//RECURSSION+MEMOIZATION
#include <bits/stdc++.h>
using namespace std;
int dp[1001][1001];
int knapsack(vector<pair<int,int>>&value,int w,int n)
{
    if(w==0||n==0)
    {
        return 0;
    }
    if(dp[n][w]!=-1)
    {
        return dp[n][w];
    }
        if(value[n-1].first<=w)
        {

            return (dp[n][w]=max((value[n-1].second)+knapsack(value,w-(value[n-1].first),n-1),knapsack(value,w,n-1)));
        }
        else
        {
            return dp[n][w]=knapsack(value,w,n-1);
        }
}
int main()
{
    memset(dp,-1,sizeof(dp));
    int n;
    cout<<"ENTER THE  NUMBER OF ITEMS: "<<endl;
    cin>>n;
    vector<pair<int,int>>value;
    for(int i=0;i<n;i++)
    {
        int a,b;
        cin>>a>>b;
        value.push_back(make_pair(a,b));//a->weight and b->price
    }
    //sort according to value[i].second in ascending order 
    int w;
    cout<<"ENTER THE MAX. CAPACITY OF THE KNAPSACK: ";
    cin>>w;
    cout<<endl;
    cout<<knapsack(value,w,n);

    return 0;
}
Posted by: Guest on September-19-2021

Browse Popular Code Answers by Language