Answers for "heap sort in java"

6

heap in java

In Java PriorityQueue can be used as a Heap.

Min Heap
PriorityQueue<Integer> minHeap = new PriorityQueue<>();


Max Heap:
PriorityQueue<Integer> maxHeap = new PriorityQueue<>(Comparator.reverseOrder());
Posted by: Guest on August-31-2020
1

Heap sort in c++

#include <iostream>
 
using namespace std;
 

void heapify(int arr[], int n, int i)
{
    int largest = i; 
    int l = 2 * i + 1;
    int r = 2 * i + 2;
 
    
    if (l < n && arr[l] > arr[largest])
        largest = l;
 
    
    if (r < n && arr[r] > arr[largest])
        largest = r;
 
    
    if (largest != i) {
        swap(arr[i], arr[largest]);
 
    
        heapify(arr, n, largest);
    }
}
 

void heapSort(int arr[], int n)
{

    for (int i = n / 2 - 1; i >= 0; i--)
        heapify(arr, n, i);
 

    for (int i = n - 1; i > 0; i--) {
       
        swap(arr[0], arr[i]);
        heapify(arr, i, 0);
    }
}
 

void printArray(int arr[], int n)
{
    for (int i = 0; i < n; ++i)
        cout << arr[i] << " ";
    cout << "\n";
}
 

int main()
{
    int arr[] = { 12, 11, 13, 5, 6, 7 };
    int n = sizeof(arr) / sizeof(arr[0]);
 
    heapSort(arr, n);
 
    cout << "Sorted array is \n";
    printArray(arr, n);
}
Posted by: Guest on December-08-2020
1

heaps in java

public class BinaryHeap {
     
    private static final int d= 2;
    private int[] heap;
    private int heapSize;
     
    /**
     * This will initialize our heap with default size. 
     */
    public BinaryHeap(int capacity){
        heapSize = 0;
        heap = new int[ capacity+1];
        Arrays.fill(heap, -1);
         
    }
     
    /**
     *  This will check if the heap is empty or not
     *  Complexity: O(1)
     */
    public boolean isEmpty(){
        return heapSize==0;
    }
     
    /**
     *  This will check if the heap is full or not
     *  Complexity: O(1)
     */
    public boolean isFull(){
        return heapSize == heap.length;
    }
     
     
    private int parent(int i){
        return (i-1)/d;
    }
     
    private int kthChild(int i,int k){
        return d*i  +k;
    }
     
    /**
     *  This will insert new element in to heap
     *  Complexity: O(log N)
     *  As worst case scenario, we need to traverse till the root
     */
    public void insert(int x){
        if(isFull())
            throw new NoSuchElementException("Heap is full, No space to insert new element");
        heap[heapSize++] = x;
        heapifyUp(heapSize-1);
    }
     
    /**
     *  This will delete element at index x
     *  Complexity: O(log N)
     * 
     */
    public int delete(int x){
        if(isEmpty())
            throw new NoSuchElementException("Heap is empty, No element to delete");
        int key = heap[x];
        heap[x] = heap[heapSize -1];
        heapSize--;
        heapifyDown(x);
        return key;
    }
 
    /**
     *  This method used to maintain the heap property while inserting an element.
     *  
     */
    private void heapifyUp(int i) {
        int temp = heap[i];
        while(i>0 && temp > heap[parent(i)]){
            heap[i] = heap[parent(i)];
            i = parent(i);
        }
        heap[i] = temp;
    }
     
    /**
     *  This method used to maintain the heap property while deleting an element.
     *  
     */
    private void heapifyDown(int i){
        int child;
        int temp = heap[i];
        while(kthChild(i, 1) < heapSize){
            child = maxChild(i);
            if(temp < heap[child]){ heap[i] = heap[child]; }else break; i = child; } heap[i] = temp; } private int maxChild(int i) { int leftChild = kthChild(i, 1); int rightChild = kthChild(i, 2); return heap[leftChild]>heap[rightChild]?leftChild:rightChild;
    }
     
    /**
     *  This method used to print all element of the heap
     *  
     */
    public void printHeap()
        {
            System.out.print("nHeap = ");
            for (int i = 0; i < heapSize; i++)
                System.out.print(heap[i] +" ");
            System.out.println();
        }
    /**
     *  This method returns the max element of the heap.
     *  complexity: O(1)
     */
     public int findMax(){
         if(isEmpty())
             throw new NoSuchElementException("Heap is empty.");
         return heap[0];
     }
      
     public static void main(String[] args){
         BinaryHeap maxHeap = new BinaryHeap(10);
         maxHeap.insert(10);
         maxHeap.insert(4);
         maxHeap.insert(9);
         maxHeap.insert(1);
         maxHeap.insert(7);
         maxHeap.insert(5);
         maxHeap.insert(3);
          
         maxHeap.printHeap();
         maxHeap.delete(5);
         maxHeap.printHeap();
          
     }
}
Posted by: Guest on August-17-2020
0

heap sort

// @see https://www.youtube.com/watch?v=H5kAcmGOn4Q

function heapify(list, size, index) {
    let largest = index;
    let left = index * 2 + 1;
    let right = left + 1;
    if (left < size && list[left] > list[largest]) {
        largest = left;
    }
    if (right < size && list[right] > list[largest]) {
        largest = right;
    }
    if (largest !== index) {
        [list[index], list[largest]] = [list[largest], list[index]];
        heapify(list, size, largest);
    }
    return list;
}

function heapsort(list) {
    const size = list.length;
    let index = ~~(size / 2 - 1);
    let last = size - 1;
    while (index >= 0) {
        heapify(list, size, --index);
    }
    while (last >= 0) {
        [list[0], list[last]] = [list[last], list[0]];
        heapify(list, --last, 0);
    }
    return list;
}

heapsort([4, 7, 2, 6, 4, 1, 8, 3]);
Posted by: Guest on June-01-2020
0

heap sort heapify and max heap in binary tree

Implementation of heap sort in C:

#include <stdio.h>
int main()
{
   int heap[10], array_size, i, j, c, root, temporary;
   printf("\n Enter size of array to be sorted :");
   scanf("%d", &array_size);
   printf("\n Enter the elements of array : ");
   for (i = 0; i < array_size; i++)
      scanf("%d", &heap[i]);
   for (i = 1; i < array_size; i++)
   {
       c = i;
       do
       {
           root = (c - 1) / 2;            
           if (heap[root] < heap[c])   /* to create MAX heap array */
           {                                  // if child is greater than parent swap them
               temporary = heap[root];      // as structure is of complete binary tree
               heap[root] = heap[c];     // it took logn steps to reach from root to leaf
               heap[c] = temporary;
           }
           c = root;
       } while (c != 0);
   }
   printf("Heap array : ");
   for (i = 0; i < array_size; i++)
       printf("%d\t ", heap[i]);         //printing the heap array
   for (j = array_size - 1; j >= 0; j--)
   {
       temporary = heap[0];
       heap[0] = heap[j] ;   /* swap max element with rightmost leaf element */
       heap[j] = temporary;
       root = 0;
       do
       {
           c = 2 * root + 1;    /* left node of root element */
           if ((heap[c] < heap[c + 1]) && c < j-1)
               c++;
           if (heap[root]<heap[c] && c<j)    /* again rearrange to max heap array */
           {
               temporary = heap[root];
               heap[root] = heap[c];
               heap[c] = temporary;
           }
           root = c;
       } while (c < j);
   }
   printf("\n The sorted array is : ");
   for (i = 0; i < array_size; i++)
      printf("\t %d", heap[i]);
}
Posted by: Guest on June-05-2020

Code answers related to "Java"

Java Answers by Framework

Browse Popular Code Answers by Language