Answers for "label encoding"

2

python convert categorical data to one-hot encoding

# Basic syntax:
df_onehot = pd.get_dummies(df, columns=['col_name'], prefix=['one_hot'])
# Where:
#	- get_dummies creates a one-hot encoding for each unique categorical
#		value in the column named col_name
#	- The prefix is added at the beginning of each categorical value 
#		to create new column names for the one-hot columns

# Example usage:
# Build example dataframe:
df = pd.DataFrame(['sunny', 'rainy', 'cloudy'], columns=['weather'])
print(df)
  weather
0   sunny
1   rainy
2  cloudy

# Convert categorical weather variable to one-hot encoding:
df_onehot = pd.get_dummies(df, columns=['weather'], prefix=['one_hot'])
print(df_onehot)
	one_hot_cloudy	 one_hot_rainy   one_hot_sunny
0                0               0               1
1                0               1               0
2                1               0               0
Posted by: Guest on November-12-2020
1

label encoding

from sklearn.preprocessing import LabelEncoder

le = LabelEncoder()
companydata.ShelveLoc = le.fit_transform(companydata.ShelveLoc)
Posted by: Guest on September-16-2020
1

how to use label encoding in python

obj_df["body_style"] = obj_df["body_style"].astype('category')
obj_df.dtypes

obj_df["body_style_cat"] = obj_df["body_style"].cat.codes
obj_df.head()
Posted by: Guest on January-31-2021

Python Answers by Framework

Browse Popular Code Answers by Language