how to convert categorical data to numerical data in python
pd.get_dummies(obj_df, columns=["body_style", "drive_wheels"], prefix=["body", "drive"]).head()
how to convert categorical data to numerical data in python
pd.get_dummies(obj_df, columns=["body_style", "drive_wheels"], prefix=["body", "drive"]).head()
panda categorical data into numerica
sex = train_dataset['Sex'].replace(['female','male'],[0,1])
print(sex)
transform categorical variables python
from sklearn.preprocessing import LabelEncoder
lb_make = LabelEncoder()
obj_df["make_code"] = lb_make.fit_transform(obj_df["make"])
obj_df[["make", "make_code"]].head(11)
pandas categorical to numeric
#this will label as one hot vectors (origin is split into 3 columns - USA, Europe, Japan and any one place will be 1 while the others are 0)
dataset['Origin'] = dataset['Origin'].map({1: 'USA', 2: 'Europe', 3: 'Japan'})
how to convert categorical data to numerical data in python
obj_df["body_style"] = obj_df["body_style"].astype('category')
obj_df.dtypes
how to convert categorical data to numerical data in python
import pandas as pd
import numpy as np
# Define the headers since the data does not have any
headers = ["symboling", "normalized_losses", "make", "fuel_type", "aspiration",
"num_doors", "body_style", "drive_wheels", "engine_location",
"wheel_base", "length", "width", "height", "curb_weight",
"engine_type", "num_cylinders", "engine_size", "fuel_system",
"bore", "stroke", "compression_ratio", "horsepower", "peak_rpm",
"city_mpg", "highway_mpg", "price"]
# Read in the CSV file and convert "?" to NaN
df = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data",
header=None, names=headers, na_values="?" )
df.head()
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us