Answers for "feature importance naive bayes python"

0

feature importance naive bayes python

neg_class_prob_sorted = NB_optimal.feature_log_prob_[0, :].argsort()[::-1]
pos_class_prob_sorted = NB_optimal.feature_log_prob_[1, :].argsort()[::-1]

print(np.take(count_vect.get_feature_names(), neg_class_prob_sorted[:10]))
print(np.take(count_vect.get_feature_names(), pos_class_prob_sorted[:10]))
Posted by: Guest on May-08-2021

Code answers related to "feature importance naive bayes python"

Python Answers by Framework

Browse Popular Code Answers by Language