feature importance naive bayes python
neg_class_prob_sorted = NB_optimal.feature_log_prob_[0, :].argsort()[::-1]
pos_class_prob_sorted = NB_optimal.feature_log_prob_[1, :].argsort()[::-1]
print(np.take(count_vect.get_feature_names(), neg_class_prob_sorted[:10]))
print(np.take(count_vect.get_feature_names(), pos_class_prob_sorted[:10]))