Answers for "Python opencv convolution"

0

Python opencv convolution

# please use python 3.x
import numpy as np

# def convolve(image, kernel, bias, stride, padding):

"""
please implement convolution on an image
arguments:
    image: input color image,  numpy array of shape (in_height, in_width, in_channel)
    kernel: weigths, numpy array of shape (kernel_size, kernel_size, in_channel, out_channel)
    bias: biases, numpy array of shape (1,1,1,out_channel)
    stride: stride, scalar
    padding: the number of zero padding along image boundary, scalar
returns:
    result: results of convolution, numpy array of shape (out_height, out_width, out_channel)
"""

# return result

import matplotlib.pyplot as plt
import cv2
import os
from scipy import ndimage as nd


def processImage(image):
    # image = cv2.imread(image)
    # plt.imshow(image)
    image = cv2.cvtColor(src=image, code=cv2.COLOR_BGR2GRAY)
    return image


def convolve(image, kernel, bias, strides, padding):
    result = nd.convolve(image, kernel, mode='reflect', cval=1.0)
    print(image.shape)
    return result


# image = processImage('images.jpg')
# print(image.shape)
# plt.imshow(image)
# plt.show()
# kernel = np.array([[-1, -1, -1], [-1, 8, -1], [-1, -1, -1]])
# image_conv = convolve(image, kernel, 1, 1)


if __name__ == '__main__':

    kernel = np.array([[1, 1, 1],
                       [1, 1, 1],
                       [1, 1, 1]])

    video = cv2.VideoCapture(r'video.avi')
    try:
        if not os.path.exists('pet'):
            os.makedirs('pet')
    except OSError:
        print('Error')
    currentframe = 0
    while True:
        ret, frame = video.read()

        if ret:
            cv2.imshow("original", frame)
            image = processImage(frame)

            output = convolve(image, kernel, 0, 1, 0)
            cv2.imshow("convert", output)
            if cv2.waitKey(27) & 0xFF == ord('q'):
                break

        else:
            break
    video.release()
    cv2.destroyAllWindows()

    # Grayscale Image
    # image = processImage('images.jpg')

    # Edge Detection Kernel

    # Convolve and Save Output
    # output = convolve(image, kernel, 0, 1, 15)
    # plt.imshow(output)
    # plt.show()
    # cv2.imwrite('2DConvolved.jpg', output)
Posted by: Guest on September-30-2021

Python Answers by Framework

Browse Popular Code Answers by Language