Answers for "validating columns in pandas on the basis of dtypes"

0

validating columns in pandas on the basis of dtypes

import pandas as pd
import pandera as pa

df = pd.DataFrame({
    "column1": [1, 2, 3],
    "column2": ["a", "b", "c"],
})

column1_schema = pa.Column(pa.Int, name="column1")
column2_schema = pa.Column(pa.String, name="column2")

# pass the dataframe as an argument to the Column object callable
df = column1_schema(df)
validated_df = column2_schema(df)

# or explicitly use the validate method
df = column1_schema.validate(df)
validated_df = column2_schema.validate(df)

# use the DataFrame.pipe method to validate two columns
validated_df = df.pipe(column1_schema).pipe(column2_schema)
Posted by: Guest on February-17-2021

Code answers related to "validating columns in pandas on the basis of dtypes"

Python Answers by Framework

Browse Popular Code Answers by Language