filter dataframe site:stackoverflow.com
df[df["column_name"] != 5].groupby("other_column_name")
filter dataframe site:stackoverflow.com
df[df["column_name"] != 5].groupby("other_column_name")
filter dataframe site:stackoverflow.com
df_filtered = df.pipe(lambda x: x['column'] == value)
filter dataframe site:stackoverflow.com
df.query('D > B').query('C > B')
# equivalent to
# df.query('D > B and C > B')
# but defeats the purpose of demonstrating chaining
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
4 3 6 7 7 4
5 5 3 7 5 9
7 6 2 6 6 5
filter dataframe site:stackoverflow.com
df = pd.DataFrame(np.random.randn(30, 3), columns=['a','b','c'])
df_filtered = df.query('a > 0').query('0 < b < 2')
filter dataframe site:stackoverflow.com
import pandas as pd
import numpy as np
np.random.seed([3,1415])
df = pd.DataFrame(
np.random.randint(10, size=(10, 5)),
columns=list('ABCDE')
)
df
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
6 8 7 6 4 7
7 6 2 6 6 5
8 2 8 7 5 8
9 4 7 6 1 5
filter dataframe site:stackoverflow.com
df_filtered = df.query('a > 0 and 0 < b < 2')
#If you need to refer to python variables in your query, the documentation says, "You can refer to variables in the environment by prefixing them with an ‘@’ character like @a + b". Note that the following are valid: df.query('a in list([1,2])'), s = set([1,2]); df.query('a in @s'). –
#teichert
filter dataframe site:stackoverflow.com
df_filtered = df.loc[lambda x: x['column'] == value]
filter dataframe site:stackoverflow.com
df.query('D > B')
A B C D E
0 0 2 7 3 8
1 7 0 6 8 6
2 0 2 0 4 9
3 7 3 2 4 3
4 3 6 7 7 4
5 5 3 7 5 9
7 6 2 6 6 5
filter dataframe site:stackoverflow.com
df_filtered = df.query('a > 0 and 0 < b < 2')
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us