What would be the DFS traversal of the given Graph
#include <bits/stdc++.h>
What would be the DFS traversal of the given Graph
#include <bits/stdc++.h>
dfs python
###############
#The Algorithm (In English):
# 1) Pick any node.
# 2) If it is unvisited, mark it as visited and recur on all its
# adjacent nodes.
# 3) Repeat until all the nodes are visited, or the node to be
# searched is found.
# The graph below (declared as a Python dictionary)
# is from the linked website and is used for the sake of
# testing the algorithm. Obviously, you will have your own
# graph to iterate through.
graph = {
'A' : ['B','C'],
'B' : ['D', 'E'],
'C' : ['F'],
'D' : [],
'E' : ['F'],
'F' : []
}
visited = set() # Set to keep track of visited nodes.
##################
# The Algorithm (In Code)
def dfs(visited, graph, node):
if node not in visited:
print (node)
visited.add(node)
for neighbour in graph[node]:
dfs(visited, graph, neighbour)
# Driver Code to test in python yourself.
# Note that when calling this, you need to
# call the starting node. In this case it is 'A'.
dfs(visited, graph, 'A')
# NOTE: There are a few ways to do DFS, depending on what your
# variables are and/or what you want returned. This specific
# example is the most fleshed-out, yet still understandable,
# explanation I could find.
DFS in c++
#include <bits/stdc++.h>
using namespace std;
class Graph {
int V;
list<int>* adj;
void DFSUtil(int v, bool visited[]);
public:
Graph(int V);
void addEdge(int v, int w);
void DFS(int v);
};
Graph::Graph(int V)
{
this->V = V;
adj = new list<int>[V];
}
void Graph::addEdge(int v, int w)
{
adj[v].push_back(w);
}
void Graph::DFSUtil(int v, bool visited[])
{
visited[v] = true;
cout << v << " ";
list<int>::iterator i;
for (i = adj[v].begin(); i != adj[v].end(); ++i)
if (!visited[*i])
DFSUtil(*i, visited);
}
void Graph::DFS(int v)
{
bool* visited = new bool[V];
for (int i = 0; i < V; i++)
visited[i] = false;
DFSUtil(v, visited);
}
int main()
{
Graph g(4);
g.addEdge(0, 1);
g.addEdge(0, 2);
g.addEdge(1, 2);
g.addEdge(2, 0);
g.addEdge(2, 3);
g.addEdge(3, 3);
cout << "Following is Depth First Traversal"
" (starting from vertex 2) \n";
g.DFS(2);
return 0;
}
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us