pd merge on multiple columns
new_df = pd.merge(A_df, B_df, how='left', left_on=['A_c1','c2'], right_on = ['B_c1','c2'])
pd merge on multiple columns
new_df = pd.merge(A_df, B_df, how='left', left_on=['A_c1','c2'], right_on = ['B_c1','c2'])
joins in pandas
pd.merge(product,customer,left_on='Product_name',right_on='Purchased_Product')
pandas merge python
import pandas as pd
df1 = pd.DataFrame({'lkey': ['foo', 'bar', 'baz', 'foo'],
'value': [1, 2, 3, 5]})
df2 = pd.DataFrame({'rkey': ['foo', 'bar', 'baz', 'foo'],
'value': [5, 6, 7, 8]})
df1.merge(df2, left_on='lkey', right_on='rkey')
merge dataframe pandas
>>> df1.merge(df2, left_on='lkey', right_on='rkey')
lkey value_x rkey value_y
0 foo 1 foo 5
1 foo 1 foo 8
2 foo 5 foo 5
3 foo 5 foo 8
4 bar 2 bar 6
5 baz 3 baz 7
merge pandas
select * from bricks;
select * from colours;
merge pandas
create table bricks (
brick_id integer,
colour varchar2(10)
);
create table colours (
colour_name varchar2(10),
minimum_bricks_needed integer
);
insert into colours values ( 'blue', 2 );
insert into colours values ( 'green', 3 );
insert into colours values ( 'red', 2 );
insert into colours values ( 'orange', 1);
insert into colours values ( 'yellow', 1 );
insert into colours values ( 'purple', 1 );
insert into bricks values ( 1, 'blue' );
insert into bricks values ( 2, 'blue' );
insert into bricks values ( 3, 'blue' );
insert into bricks values ( 4, 'green' );
insert into bricks values ( 5, 'green' );
insert into bricks values ( 6, 'red' );
insert into bricks values ( 7, 'red' );
insert into bricks values ( 8, 'red' );
insert into bricks values ( 9, null );
commit;
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us