Answers for "plot python"

3

python import data

# Basic syntax:
with open('/path/to/filename.extension', 'open_mode') as filename:
  file_data = filename.readlines()	# Or filename.read() 
# Where:
#	- open imports the file as a file object which then needs to be read
#		with one of the read options
#	- readlines() imports each line of the file as an element in a list
#	- read() imports the file contents as one long new-line-separated 
#		string
#	- open_mode can be one of:
#		- "r" = Read which opens a file for reading (error if the file 
#			doesn't exist)
#		- "a" = Append which opens a file for appending (creates the 
#			file if it doesn't exist)
#		- "w" = Write which opens a file for writing (creates the file 
#			if it doesn't exist)
#		- "x" = Create which creates the specified file (returns an error
#			if the file exists)
# Note, "with open() as" is recommended because the file is closed 
#	automatically so you don't have to remember to use file.close()
# Note, if you're getting unwanted newline characters with this approach,
#	you can run: file_data = filename.read().splitlines() instead

# Basic syntax for a delimited file with multiple fields:
import csv
with open('/path/to/filename.extension', 'open_mode') as filename:
	file_data = csv.reader(filename, delimiter='delimiter')
    data_as_list = list(file_data)
# Where:
#	- csv.reader can be used for files that use any delimiter, not just
#		commas, e.g.: '\t', '|', ';', etc. (It's a bit of a misnomer)
#	- csv.reader() returns a csv.reader object which can be iterated 
#		over, directly converted to a list, and etc. 

# Importing data using Numpy:
import numpy as np
data = np.loadtxt('/path/to/filename.extension',
				delimiter=',', 	# String used to separate values
				skiprows=2, 	# Number of rows to skip
				usecols=[0,2], 	# Specify which columns to read
				dtype=str) 		# The type of the resulting array

# Importing data using Pandas:
import pandas as pd
data = pd.read_csv('/path/to/filename.extension',
				nrows=5, 		# Number of rows of file to read
				header=None, 	# Row number to use as column names 
	            sep='\t', 		# Delimiter to use 
	            comment='#', 	# Character to split comments
				na_values=[""])	# String to recognize as NA/NaN

# Note, pandas can also import excel files with pd.read_excel()
Posted by: Guest on October-11-2020
8

import matplotlib.pyplot as plt

from matplotlib import pyplot as plt

import matplotlib.pyplot as plt
Posted by: Guest on March-15-2020
20

how to plot a graph using matplotlib

from matplotlib import pyplot as plt
plt.plot([0, 1, 2, 3, 4, 5], [0, 1, 4, 9, 16, 25])
plt.show()
Posted by: Guest on February-10-2020
4

python 2d graph

names = ['group_a', 'group_b', 'group_c']
values = [1, 10, 100]

plt.figure(figsize=(9, 3))

plt.subplot(131)
plt.bar(names, values)
plt.subplot(132)
plt.scatter(names, values)
plt.subplot(133)
plt.plot(names, values)
plt.suptitle('Categorical Plotting')
plt.show()
Posted by: Guest on May-12-2020
16

matplotlib plot

import matplotlib.pyplot as plt
fig = plt.figure(1)	#identifies the figure 
plt.title("Y vs X", fontsize='16')	#title
plt.plot([1, 2, 3, 4], [6,2,8,4])	#plot the points
plt.xlabel("X",fontsize='13')	#adds a label in the x axis
plt.ylabel("Y",fontsize='13')	#adds a label in the y axis
plt.legend(('YvsX'),loc='best')	#creates a legend to identify the plot
plt.savefig('Y_X.png')	#saves the figure in the present directory
plt.grid()	#shows a grid under the plot
plt.show()
Posted by: Guest on January-05-2021
1

how to plotting points on matplotlib

import matplotlib.pyplot as plt 
import numpy as np

data = np.random.rand(1024,2)
plt.scatter(data[:,0],data[:,1])
plt.show()
// Don't be
// fooled by this simplicity— plt.scatter() is a rich command.
Posted by: Guest on June-13-2020

Python Answers by Framework

Browse Popular Code Answers by Language