drop a column pandas
df.drop(['column_1', 'Column_2'], axis = 1, inplace = True)
drop a column pandas
df.drop(['column_1', 'Column_2'], axis = 1, inplace = True)
python pandas drop
df = pd.DataFrame(np.arange(12).reshape(3, 4),
... columns=['A', 'B', 'C', 'D'])
>>> df
A B C D
0 0 1 2 3
1 4 5 6 7
2 8 9 10 11
Drop columns
>>> df.drop(['B', 'C'], axis=1)
A D
0 0 3
1 4 7
2 8 11
>>> df.drop(columns=['B', 'C'])
A D
0 0 3
1 4 7
2 8 11
df drop column
df = df.drop(['B', 'C'], axis=1)
drop a column in pandas
df = df.drop(df.columns[[0, 1, 3]], axis=1) # df.columns is zero-based pd.Index
drop column pandas
df.drop(['column_1', 'Column_2'], axis = 1, inplace = True)
# Remove all columns between column index 1 to 3
df.drop(df.iloc[:, 1:3], inplace = True, axis = 1)
drop dataframe columns
# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis = 1, inplace = True)
dict_1 = {'workclass_stripped':'workclass', 'education_stripped':'education',
'marital-status_stripped':'marital_status', 'occupation_stripped':'occupation',
'relationship_stripped':'relationship', 'race_stripped':'race',
'sex_stripped':'sex', 'native-country_stripped':'native-country',
'Income_stripped':'Income'}
df.rename(columns = dict_1, inplace = True)
df
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us