Answers for "tensorflow save model every epoch"

0

model checkpoint keras

my_callbacks = [
    tf.keras.callbacks.EarlyStopping(patience=2),
    tf.keras.callbacks.ModelCheckpoint(filepath='model.{epoch:02d}-{val_loss:.2f}.h5'),
    tf.keras.callbacks.TensorBoard(log_dir='./logs'),
]
model.fit(dataset, epochs=10, callbacks=my_callbacks)
Posted by: Guest on July-02-2020
0

use model from checkpoint tensorflow

 
with tf.Session() as sess:
  new_saver = tf.train.import_meta_graph('my_test_model-1000.meta')
  new_saver.restore(sess, tf.train.latest_checkpoint('./'))
Posted by: Guest on August-27-2020
0

use model from checkpoint tensorflow

 
with tf.Session() as sess:    
    saver = tf.train.import_meta_graph('my-model-1000.meta')
    saver.restore(sess,tf.train.latest_checkpoint('./'))
    print(sess.run('w1:0'))
##Model has been restored. Above statement will print the saved value of w1.
Posted by: Guest on August-27-2020
-1

export keras model at specific epoch

import keras
import numpy as np

inp = keras.layers.Input(shape=(10,))
dense = keras.layers.Dense(10, activation='relu')(inp)
out = keras.layers.Dense(1, activation='sigmoid')(dense)
model = keras.models.Model(inp, out)
model.compile(optimizer="adam", loss="binary_crossentropy",)

# Just a noise data for fast working example
X = np.random.normal(0, 1, (1000, 10))
y = np.random.randint(0, 2, 1000)

# create and use callback:
saver = CustomSaver()
model.fit(X, y, callbacks=[saver], epochs=5)
Posted by: Guest on September-24-2020

Code answers related to "tensorflow save model every epoch"

Python Answers by Framework

Browse Popular Code Answers by Language