rename columns pandas
df.rename(columns={'oldName1': 'newName1',
'oldName2': 'newName2'},
inplace=True, errors='raise')
# Make sure you set inplace to True if you want the change
# to be applied to the dataframe
rename columns pandas
df.rename(columns={'oldName1': 'newName1',
'oldName2': 'newName2'},
inplace=True, errors='raise')
# Make sure you set inplace to True if you want the change
# to be applied to the dataframe
python: change column name
df = df.rename(columns = {'myvar':'myvar_new'})
Renaming row value in pandas
# if the row value in column 'is_blue' is 1
# Change the row value to 'Yes'
# otherwise change it to 'No'
df['is_blue'] = df['is_blue'].apply(lambda x: 'Yes' if (x == 1) else 'No')
# You can also use mapping to accomplish the same result
# Warning: Mapping only works once on the same column creates NaN's otherwise
df['is_blue'] = df['is_blue'].map({0: 'No', 1: 'Yes'})
df change column names
df.rename(columns={"A": "a", "B": "b", "C": "c"},
errors="raise", inplace=True)
rename column pandas
df_new = df.rename(columns={'A': 'a'}, index={'ONE': 'one'})
print(df_new)
# a B C
# one 11 12 13
# TWO 21 22 23
# THREE 31 32 33
print(df)
# A B C
# ONE 11 12 13
# TWO 21 22 23
# THREE 31 32 33
name columns pandas
>gapminder.columns = ['country','year','population',
'continent','life_exp','gdp_per_cap']
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us