rename columns pandas
df.rename(columns={'oldName1': 'newName1',
'oldName2': 'newName2'},
inplace=True, errors='raise')
# Make sure you set inplace to True if you want the change
# to be applied to the dataframe
rename columns pandas
df.rename(columns={'oldName1': 'newName1',
'oldName2': 'newName2'},
inplace=True, errors='raise')
# Make sure you set inplace to True if you want the change
# to be applied to the dataframe
pandas rename column
df.rename(columns={"old_col1": "new_col1", "old_col2": "new_col2"}, inplace=True)
rename multiple pandas columns with list
for j in range(len(df.columns)):
old = df.columns[j]
new = new_columns[j]
df = df.rename(columns = {old:new})
df change column names
df.rename(columns={"A": "a", "B": "b", "C": "c"},
errors="raise", inplace=True)
change name of column pandas
#df.rename() will only return a new df with the new headers
#df = df.rename() will change the heders of the current dataframe
df = df.rename(columns={"old_col1": "new_col1", "old_col2": "new_col2"})
how to give name to column in pandas
>gapminder.rename(columns={'pop':'population',
'lifeExp':'life_exp',
'gdpPercap':'gdp_per_cap'},
inplace=True)
>print(gapminder.columns)
Index([u'country', u'year', u'population', u'continent', u'life_exp',
u'gdp_per_cap'],
dtype='object')
>gapminder.head(3)
country year population continent life_exp gdp_per_cap
0 Afghanistan 1952 8425333 Asia 28.801 779.445314
1 Afghanistan 1957 9240934 Asia 30.332 820.853030
2 Afghanistan 1962 10267083 Asia 31.997 853.100710
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us