convert column to numeric pandas
# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame
# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)
convert column to numeric pandas
# convert all columns of DataFrame
df = df.apply(pd.to_numeric) # convert all columns of DataFrame
# convert just columns "a" and "b"
df[["a", "b"]] = df[["a", "b"]].apply(pd.to_numeric)
change dataframe column type
>>> df.astype({'col1': 'int32'}).dtypes
col1 int32
col2 int64
dtype: object
set dtype for multiple columns pandas
import pandas as pd
df = pd.DataFrame({'id':['a1', 'a2', 'a3', 'a4'],
'A':['0', '1', '2', '3'],
'B':['1', '1', '1', '1'],
'C':['0', '1', '1', '0']})
df[['A', 'B', 'C']] = df[['A', 'B', 'C']].apply(pd.to_numeric, axis = 1)
pandas change multiple column types
#Two ways to do this
df[['parks', 'playgrounds', 'sports']].apply(lambda x: x.astype('category'))
cols = ['parks', 'playgrounds', 'sports', 'roading']:
public[cols] = public[cols].astype('category')
pandas change multiple column types
#Method 1:
df["Delivery Charges"] = df[["Weight", "Package Size", "Delivery Mode"]].apply(
lambda x : calculate_rate(*x), axis=1)
#Method 2:
df["Delivery Charges"] = df.apply(
lambda x : calculate_rate(x["Weight"],
x["Package Size"], x["Delivery Mode"]), axis=1)
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us