drop if nan in column pandas
df = df[df['EPS'].notna()]
remove rows or columns with NaN value
df.dropna() #drop all rows that have any NaN values
df.dropna(how='all')
drop_na in pandas
# importing pandas module
import pandas as pd
# making data frame from csv file
data = pd.read_csv("nba.csv")
# making new data frame with dropped NA values
new_data = data.dropna(axis = 0, how ='any')
drop na in pandas
df.dropna(inplace = True)
or
df_new = df.dropna()
Returns a new DataFrame omitting rows with null values
# Returns a new DataFrame omitting rows with null values
df4.na.drop().show()
# +---+------+-----+
# |age|height| name|
# +---+------+-----+
# | 10| 80|Alice|
# +---+------+-----+
pandas dropna
df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
... pd.NaT]})
>>> df
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
##Drop the rows where at least one element is missing.
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us