clean nas from column pandas
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25
clean nas from column pandas
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25
Returns a new DataFrame omitting rows with null values
# Returns a new DataFrame omitting rows with null values
df4.na.drop().show()
# +---+------+-----+
# |age|height| name|
# +---+------+-----+
# | 10| 80|Alice|
# +---+------+-----+
pandas dropna
df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
... "toy": [np.nan, 'Batmobile', 'Bullwhip'],
... "born": [pd.NaT, pd.Timestamp("1940-04-25"),
... pd.NaT]})
>>> df
name toy born
0 Alfred NaN NaT
1 Batman Batmobile 1940-04-25
2 Catwoman Bullwhip NaT
##Drop the rows where at least one element is missing.
>>> df.dropna()
name toy born
1 Batman Batmobile 1940-04-25
remove na python
>>> df.dropna(subset=['name', 'born'])
name toy born
1 Batman Batmobile 1940-04-25
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us