python convert nan to empty string
# Option 1
df1 = df.replace(np.nan, '', regex=True) # All data frame
# Option 2
df[['column1','column2']] = df[['column1','column2']].fillna('') # Specific columns
python convert nan to empty string
# Option 1
df1 = df.replace(np.nan, '', regex=True) # All data frame
# Option 2
df[['column1','column2']] = df[['column1','column2']].fillna('') # Specific columns
replace nan in pandas
df['DataFrame Column'] = df['DataFrame Column'].fillna(0)
pandas replace nan
data["Gender"].fillna("No Gender", inplace = True)
python pandas replace nan with null
df.fillna('', inplace=True)
replace nan in pandas column with mode and printing it
def exercise4(df):
df1 = df.select_dtypes(np.number)
df2 = df.select_dtypes(exclude = 'float')
mode = df2.mode()
df3 = df1.fillna(df.mean())
df4 = df2.fillna(mode.iloc[0,:])
new_df = [df3,df4]
df5 = pd.concat(new_df,axis=1)
new_cols = list(df.columns)
df6 = df5[new_cols]
return df6
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us