Answers for "callback for best model tensorflow"

3

callbacks tensorflow 2.0

import tensorflow as tf

class myCallback(tf.keras.callbacks.Callback):
  def on_epoch_end(self, epoch, logs={}):
    if(logs.get('acc')>0.6):
      print("nReached 60% accuracy so cancelling training!")
      self.model.stop_training = True

mnist = tf.keras.datasets.fashion_mnist

(x_train, y_train),(x_test, y_test) = mnist.load_data()
x_train, x_test = x_train / 255.0, x_test / 255.0

callbacks = myCallback()

model = tf.keras.models.Sequential([
  tf.keras.layers.Flatten(input_shape=(28, 28)),
  tf.keras.layers.Dense(512, activation=tf.nn.relu),
  tf.keras.layers.Dense(10, activation=tf.nn.softmax)
])
model.compile(optimizer=tf.optimizers.Adam(),
              loss='sparse_categorical_crossentropy',
              metrics=['accuracy'])

model.fit(x_train, y_train, epochs=10, callbacks=[callbacks])
Posted by: Guest on August-02-2020
0

model checkpoint keras

my_callbacks = [
    tf.keras.callbacks.EarlyStopping(patience=2),
    tf.keras.callbacks.ModelCheckpoint(filepath='model.{epoch:02d}-{val_loss:.2f}.h5'),
    tf.keras.callbacks.TensorBoard(log_dir='./logs'),
]
model.fit(dataset, epochs=10, callbacks=my_callbacks)
Posted by: Guest on July-02-2020

Python Answers by Framework

Browse Popular Code Answers by Language