Answers for "drop dataframe"

39

python pandas drop

df = pd.DataFrame(np.arange(12).reshape(3, 4),
...                   columns=['A', 'B', 'C', 'D'])
>>> df
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

Drop columns
>>> df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11
>>> df.drop(columns=['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11
Posted by: Guest on February-04-2020
18

df.drop

>>>df = pd.DataFrame(np.arange(12).reshape(3, 4), 
                     columns=['A', 'B', 'C', 'D'])
>>>df
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

>>> df.drop(['B', 'C'], axis=1)
   A   D
0  0   3
1  4   7
2  8  11

OR

>>> df.drop(columns=['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11
Posted by: Guest on March-26-2020
0

Python pandas how to drop a column

df = pd.DataFrame(np.arange(12).reshape(3, 4), columns=['A', 'B', 'C', 'D'])
>>> df
   A  B   C   D
0  0  1   2   3
1  4  5   6   7
2  8  9  10  11

cols=['B', 'C']
>>> df.drop(columns = cols)  # or # df.drop(columns = ['B', 'C'])
   A   D
0  0   3
1  4   7
2  8  11
Posted by: Guest on July-22-2021
-1

drop dataframe columns

# Drop The Original Categorical Columns which had Whitespace Issues in their values
df.drop(cat_columns, axis = 1, inplace = True)

dict_1 = {'workclass_stripped':'workclass', 'education_stripped':'education', 
         'marital-status_stripped':'marital_status', 'occupation_stripped':'occupation',
         'relationship_stripped':'relationship', 'race_stripped':'race',
         'sex_stripped':'sex', 'native-country_stripped':'native-country',
         'Income_stripped':'Income'}

df.rename(columns = dict_1, inplace = True)
df
Posted by: Guest on April-12-2021

Python Answers by Framework

Browse Popular Code Answers by Language