pandas groupby sum
df.groupby(['Fruit','Name'])['Number'].sum()
two groupby pandas
In [8]: grouped = df.groupby('A')
In [9]: grouped = df.groupby(['A', 'B'])
pandas sum
df.loc['Total'] = pd.Series(df['MyColumn'].sum(), index = ['MyColumn'])
print (df)
X MyColumn Y Z
0 A 84.0 13.0 69.0
1 B 76.0 77.0 127.0
2 C 28.0 69.0 16.0
3 D 28.0 28.0 31.0
4 E 19.0 20.0 85.0
5 F 84.0 193.0 70.0
Total NaN 319.0 NaN NaN
pandas sum
import pandas as pd
data = {'Month': ['Jan ','Feb ','Mar ','Apr ','May ','Jun '],
'Bill Commission': [1500,2200,3500,1800,3000,2800],
'Maria Commission': [3200,4100,2500,3000,4700,3400],
'Jack Commission': [1700,3100,3300,2700,2400,3100]
}
df = pd.DataFrame(data,columns=['Month','Bill Commission','Maria Commission','Jack Commission'])
print (df)
pandas sum group by
df.groupby(['Fiscal_Year','Billing_Group'])['CHARGE_AMT'].sum()
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us