drop if nan in column pandas
df = df[df['EPS'].notna()]
remove nan from list python
cleanedList = [x for x in countries if str(x) != 'nan']
how to filter out all NaN values in pandas df
#return a subset of the dataframe where the column name value != NaN
df.loc[df['column name'].isnull() == False]
dropna pandas
df = pd.DataFrame({"name": ['Alfred', 'Batman', 'Catwoman'],
"toy": [np.nan, 'Batmobile', 'Bullwhip'],
"born": [pd.NaT, pd.Timestamp("1940-04-25"),
pd.NaT]})
df
# o/p
# name toy born
# 0 Alfred NaN NaT
# 1 Batman Batmobile 1940-04-25
# 2 Catwoman Bullwhip NaT
# Drop the rows where at least one element is missing.
df.dropna()
# o/p
# name toy born
# 1 Batman Batmobile 1940-04-25
# ref. https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.dropna.html
when converting from dataframe to list delete nan values
a = [[y for y in x if pd.notna(y)] for x in df.values.tolist()]
print (a)
[['str', 'aad', 'asd'], ['ddd'], ['xyz', 'abc'], ['btc', 'trz', 'abd']]
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us