Answers for "random forest sk learn"

8

sklearn random forest

from sklearn.ensemble import RandomForestClassifier


clf = RandomForestClassifier(max_depth=2, random_state=0)

clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on November-26-2020
2

how to use random tree in python

from sklearn.ensemble import RandomForestRegressor

regressor = RandomForestRegressor(n_estimators=20, random_state=0)
regressor.fit(X_train, y_train)
y_pred = regressor.predict(X_test)
Posted by: Guest on May-23-2020
0

Scikit learn random forest classifier

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification
X, y = make_classification(n_samples=1000, n_features=4,
                           n_informative=2, n_redundant=0,
                           random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)
clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on March-17-2021
1

how to use random tree in python

from sklearn.model_selection import train_test_split

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Posted by: Guest on May-23-2020
1

sklearn random forest

from sklearn.ensemble import RandomForestClassifier
from sklearn.datasets import make_classification


X, y = make_classification(n_samples=1000, n_features=4,
                            n_informative=2, n_redundant=0,
                            random_state=0, shuffle=False)
clf = RandomForestClassifier(max_depth=2, random_state=0)

clf.fit(X, y)

print(clf.predict([[0, 0, 0, 0]]))
Posted by: Guest on November-26-2020
1

scikit learn random forest

from sklearn.ensemble import BaggingClassifier
from sklearn.neighbors import KNeighborsClassifier
bagging = BaggingClassifier(KNeighborsClassifier(),
                            max_samples=0.5, max_features=0.5)
Posted by: Guest on January-25-2021

Python Answers by Framework

Browse Popular Code Answers by Language