sklearn random forest regressor
from sklearn.ensemble import RandomForestRegressor
clf = RandomForestRegressor(max_depth=2, random_state=0)
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))
sklearn random forest regressor
from sklearn.ensemble import RandomForestRegressor
clf = RandomForestRegressor(max_depth=2, random_state=0)
clf.fit(X, y)
print(clf.predict([[0, 0, 0, 0]]))
random forest python
from sklearn.ensemble import RandomForestClassifier
y = train_data["Survived"]
features = ["Pclass", "Sex", "SibSp", "Parch","Fare","Age"]
X = pd.get_dummies(train_data[features])
X_test = pd.get_dummies(test_data[features])
model = RandomForestClassifier(n_estimators=100, max_depth=5, random_state=1)
model.fit(X, y)
predictions = model.predict(X_test)
how to use random tree in python
from sklearn.model_selection import train_test_split
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=0)
Random forest classifier python
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
# Creating a bar plot
sns.barplot(x=feature_imp, y=feature_imp.index)
# Add labels to your graph
plt.xlabel('Feature Importance Score')
plt.ylabel('Features')
plt.title("Visualizing Important Features")
plt.legend()
plt.show()
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us