Answers for "whow to use Lasso Regression in sklearn"

1

scikit learn lasso regression

from sklearn import linear_model
reg = linear_model.Lasso(alpha=0.1).fit(X, y)
reg.fit(X, y) #We can fit Lasso to the dataset in this way too
clf.score(X, y) #Return the mean accuracy on the given test data and labels
cfl.predict(X) #Return the predictions

#Regression Metrics
#Mean Absolute Error

from sklearn.metrics import mean_absolute_error 
mean_absolute_error(y_true, y_pred)

#Mean Squared Error

from sklearn.metrics import mean_squared_error
mean_squared_error(y_true, p_pred)

#R2 Score

from sklearn.metrics import r2_score
r2_score(y_true, y_pred)

#If you like the answer, please upvote -;)
Posted by: Guest on May-07-2021

Code answers related to "whow to use Lasso Regression in sklearn"

Python Answers by Framework

Browse Popular Code Answers by Language