change value in pandas dataframe cell
df.loc[row_or_index, column_name] = value
change value in pandas dataframe cell
df.loc[row_or_index, column_name] = value
pandas update with condition
import pandas as pd
import numpy as np
df = pd.DataFrame({'value':np.arange(1000000)})
# Solution 1 - Fastest :
df['value'] = np.where(df['value'] > 20000, 0, df['value'])
# Solution 2:
df.loc[df['value'] > 20000, 'value'] = 0
# Solution 3:
df['value'] = df['value'].mask(df['value'] > 20000, 0)
# Solution 4 - Slowest, note that df.where applies where condition is wrong:
df['a'] = df.where(df.a <= 20000, 0)
pandas replace values in column based on condition
In [41]:
df.loc[df['First Season'] > 1990, 'First Season'] = 1
df
Out[41]:
Team First Season Total Games
0 Dallas Cowboys 1960 894
1 Chicago Bears 1920 1357
2 Green Bay Packers 1921 1339
3 Miami Dolphins 1966 792
4 Baltimore Ravens 1 326
5 San Franciso 49ers 1950 1003
change column value based on another column pandas
# Changes the 'is_electric' column based on value in the 'type' column
# If the 'type' column == 'electric' then the 'is_electric' becomes 'YES'
df['is_electric']= df['type'].apply(lambda x: 'YES' if (x == 'electric') else 'NO')
replace values in a column by condition python
df.loc[df['employrate'] > 70, 'employrate'] = 7
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us