pandas replace nan
data["Gender"].fillna("No Gender", inplace = True)
pandas replace nan
data["Gender"].fillna("No Gender", inplace = True)
python pandas convert nan to 0
pandas.DataFrame.fillna(0)
python pandas fillna
# importing pandas module
import pandas as pd
# making data frame from csv file
nba = pd.read_csv("nba.csv")
# replacing na values in college with No college
nba["College"].fillna("No College", inplace = True)
# OR
nba.College.fillna("No College", inplace = True)
print(nba)
python dataframe replace nan with 0
In [7]: df
Out[7]:
0 1
0 NaN NaN
1 -0.494375 0.570994
2 NaN NaN
3 1.876360 -0.229738
4 NaN NaN
In [8]: df.fillna(0)
Out[8]:
0 1
0 0.000000 0.000000
1 -0.494375 0.570994
2 0.000000 0.000000
3 1.876360 -0.229738
4 0.000000 0.000000
df.fillna(-999,inplace=True)
df2.replace(-999, np.nan, inplace=True)
df2.fillna(df2.mean())
EventId A B C
0 100000 0.91 124.711 2.666000
1 100001 0.91 124.711 -0.202838
2 100002 0.91 124.711 -0.202838
3 100003 0.91 124.711 -0.202838
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us