logistic regression sklearn
#Logistic Regression Model from sklearn.linear_model import LogisticRegression LR = LogisticRegression(random_state=0).fit(X, y) LR.predict(X[:2, :]) #Return the predictions LR.score(X, y) #Return the mean accuracy on the given test data and labels #Regression Metrics #Mean Absolute Error from sklearn.metrics import mean_absolute_error mean_absolute_error(y_true, y_pred) #Mean Squared Error from sklearn.metrics import mean_squared_error mean_squared_error(y_true, p_pred) #R2 Score from sklearn.metrics import r2_score r2_score(y_true, y_pred)