Answers for "train_test_split with info"

30

train test split sklearn

from sklearn.model_selection import train_test_split

X = df.drop(['target'],axis=1).values   # independant features
y = df['target'].values					# dependant variable

# Choose your test size to split between training and testing sets:
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.25, random_state=42)
Posted by: Guest on November-08-2020
2

test_size

This parameter decides the size of the data that has to be split as the test dataset. This is given as a fraction. For example, if you pass 0.5 as the value, the dataset will be split 50% as the test dataset. If you’re specifying this parameter, you can ignore the next parameter.
Posted by: Guest on August-16-2020

Python Answers by Framework

Browse Popular Code Answers by Language