Answers for "normalize numpy between -1 and 1"

4

numpy normal distribution

>>> mu, sigma = 0, 0.1 # mean and standard deviation
>>> s = np.random.normal(mu, sigma, 1000)
Posted by: Guest on May-12-2020
0

normalize 2d numpy array

import numpy as np

def scale(X, x_min, x_max):
    nom = (X-X.min(axis=0))*(x_max-x_min)
    denom = X.max(axis=0) - X.min(axis=0)
    denom[denom==0] = 1
    return x_min + nom/denom 

X = np.array([
    [ 0,  1],
    [ 2,  3],
    [ 4,  5],
    [ 6,  7],
    [ 8,  9],
    [10, 11],
    [12, 13],
    [14, 15]
])
X_scaled = scale(X, -1, 1)
print(X_scaled)
Posted by: Guest on April-10-2021

Code answers related to "normalize numpy between -1 and 1"

Python Answers by Framework

Browse Popular Code Answers by Language