Answers for "handle missing values in pandas"

4

handling missing or NaN values in pandas dataframe

# Six(6) ways to handle NaN values

# 1. Drop/delete any rows with NaN values
df.dropna(axis = 0) #row is axis = 0
# 2. Drop/delete any columns with NaN values
df.dropna(axis = 1) #column is axis = 1
# 3. Replace all NaN values with 0
df.fillna(0) 
# 4. Replace NaN values with the previous value in the column, Fill Forward
df.fillna(method = 'ffill', axis = 0) #OR axis = 1 for rows
# 5. Replace NaN values with the next value in the column, Fill Backward
df.fillna(method = 'backfill', axis = 0) #OR axis =1 for rows
# 6. replace NaN values by using linear interpolation using column values
df.interpolate(method = 'linear', axis = 0) #OR axis = 1 for rows

#NB: 1. For the last three options, depending on the method, changes to NaN 
# in the first row, last row, first column or last column may not be effected.
# 2. Remember to include inplace = True if you want the original dataframe to
#be modified, else the changes will revert back to the original when you 
#reference the dataframe again. Eg.
df.dropna(axis = 0, inplace = True)
Posted by: Guest on August-27-2021
0

check for missing values by column in pandas

df.isna().any()
Posted by: Guest on October-07-2020
0

how to check for missing values in pandas

dataframe.isnull()
dataframe.any()
Posted by: Guest on December-30-2020
-1

getting the number of missing values in pandas

cols_to_delete = df.columns[df.isnull().sum()/len(df) > .90]
df.drop(cols_to_delete, axis = 1, inplace = True)
Posted by: Guest on August-05-2020

Code answers related to "handle missing values in pandas"

Python Answers by Framework

Browse Popular Code Answers by Language