how to get a row from a dataframe in python
df.iloc[[index]]
how to get a row from a dataframe in python
df.iloc[[index]]
isolate row based on index pandas
dfObj.iloc[: , [0, 2]]
select rows from dataframe pandas
from pandas import DataFrame
boxes = {'Color': ['Green','Green','Green','Blue','Blue','Red','Red','Red'],
'Shape': ['Rectangle','Rectangle','Square','Rectangle','Square','Square','Square','Rectangle'],
'Price': [10,15,5,5,10,15,15,5]
}
df = DataFrame(boxes, columns= ['Color','Shape','Price'])
select_color = df.loc[df['Color'] == 'Green']
print (select_color)
dataframe select row by index value
In [1]: df = pd.DataFrame(np.random.rand(5,2),index=range(0,10,2),columns=list('AB'))
In [2]: df
Out[2]:
A B
0 1.068932 -0.794307
2 -0.470056 1.192211
4 -0.284561 0.756029
6 1.037563 -0.267820
8 -0.538478 -0.800654
In [5]: df.iloc[[2]]
Out[5]:
A B
4 -0.284561 0.756029
In [6]: df.loc[[2]]
Out[6]:
A B
2 -0.470056 1.192211
pandas return row
1. Selecting data by row numbers (.iloc)
# myrow = data.iloc[<row selection>]
myrow = data.iloc[7]
myrow = data.iloc[0:9]
2. Selecting data by label or by a conditional statement (.loc)
# myrow = data.loc[<row selection.]
myrow = data.loc['University ABC']
3. Selecting in a hybrid approach (.ix) (now Deprecated in Pandas 0.20.1)
# Works like a .loc but also accepts integers - may lead to unexpected results
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us