pd merge on multiple columns
new_df = pd.merge(A_df, B_df, how='left', left_on=['A_c1','c2'], right_on = ['B_c1','c2'])
pd merge on multiple columns
new_df = pd.merge(A_df, B_df, how='left', left_on=['A_c1','c2'], right_on = ['B_c1','c2'])
concat dataframe from list of dataframe
import pandas as pd
df = pd.concat(list_of_dataframes)
python add multiple columns to pandas dataframe
# Basic syntax:
df[['new_column_1_name', 'new_column_2_name']] = pd.DataFrame([[np.nan, 'word']], index=df.index)
# Where the columns you're adding have to be pandas dataframes
# Example usage:
# Define example dataframe:
import pandas as pd
import numpy as np
df = pd.DataFrame({
'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]
})
print(df)
col_1 col_2
0 0 4
1 1 5
2 2 6
3 3 7
# Add several columns simultaneously:
df[['new_col_1', 'new_col_2', 'new_col_3']] = pd.DataFrame([[np.nan, 42, 'wow']], index=df.index)
print(df)
col_1 col_2 new_col_1 new_col_2 new_col_3
0 0 4 NaN 42 wow
1 1 5 NaN 42 wow
2 2 6 NaN 42 wow
3 3 7 NaN 42 wow
# Note, this isn't much more efficient than simply doing three
# separate assignments, e.g.:
df['new_col_1'] = np.nan
df['new_col_2'] = 42
df['new_col_3'] = 'wow'
concat 3 column in pandas
In[17]:df['combined']=df['bar'].astype(str)+'_'+df['foo']+'_'+df['new']
In[17]:df
Out[18]:
bar foo new combined
0 1 a apple 1_a_apple
1 2 b banana 2_b_banana
2 3 c pear 3_c_pear
dataframe concatenate
# Pandas for Python
df['col1 & col2'] = df['col1']+df['col2']
#Output
#col1 col2 col1 & col2
#A1 A2 A1A2
#B1 B2 B1B2
assign multiple columns pandas
import pandas as pd
df = {'col_1': [0, 1, 2, 3],
'col_2': [4, 5, 6, 7]}
df = pd.DataFrame(df)
df[[ 'column_new_1', 'column_new_2','column_new_3']] = [np.nan, 'dogs',3] #thought this wo
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us