joins in pandas
pd.merge(product,customer,left_on='Product_name',right_on='Purchased_Product')
joins in pandas
pd.merge(product,customer,left_on='Product_name',right_on='Purchased_Product')
joins in pandas
pd.merge(product,customer,how='inner',left_on=['Product_ID','Seller_City'],right_on=['Product_ID','City'])
join in pandas
import pandas as pd
clients = {'Client_ID': [111,222,333,444,555],
'Client_Name': ['Jon Snow','Maria Green', 'Bill Jones','Rick Lee','Pamela Lopez']
}
df1 = pd.DataFrame(clients, columns= ['Client_ID','Client_Name'])
countries = {'Client_ID': [111,222,333,444,777],
'Client_Country': ['UK','Canada','Spain','China','Brazil']
}
df2 = pd.DataFrame(countries, columns= ['Client_ID', 'Client_Country'])
Inner_Join = pd.merge(df1, df2, how='inner', on=['Client_ID', 'Client_ID'])
print(Inner_Join)
Joins with another DataFrame
# Joins with another DataFrame
df.join(df2, df.name == df2.name, 'outer').select(
df.name, df2.height).collect()
# [Row(name=None, height=80), Row(name=u'Bob', height=85), Row(
# name=u'Alice', height=None)]
df.join(df2, 'name', 'outer').select('name', 'height').collect()
# [Row(name=u'Tom', height=80), Row(name=u'Bob', height=85), Row(
# name=u'Alice', height=None)]
cond = [df.name == df3.name, df.age == df3.age]
df.join(df3, cond, 'outer').select(df.name, df3.age).collect()
# [Row(name=u'Alice', age=2), Row(name=u'Bob', age=5)]
df.join(df2, 'name').select(df.name, df2.height).collect()
# Row(name=u'Bob', height=85)]
df.join(df4, ['name', 'age']).select(df.name, df.age).collect()
# [Row(name=u'Bob', age=5)]
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us