Answers for "how to do one hot encoding in python"

2

python convert categorical data to one-hot encoding

# Basic syntax:
df_onehot = pd.get_dummies(df, columns=['col_name'], prefix=['one_hot'])
# Where:
#	- get_dummies creates a one-hot encoding for each unique categorical
#		value in the column named col_name
#	- The prefix is added at the beginning of each categorical value 
#		to create new column names for the one-hot columns

# Example usage:
# Build example dataframe:
df = pd.DataFrame(['sunny', 'rainy', 'cloudy'], columns=['weather'])
print(df)
  weather
0   sunny
1   rainy
2  cloudy

# Convert categorical weather variable to one-hot encoding:
df_onehot = pd.get_dummies(df, columns=['weather'], prefix=['one_hot'])
print(df_onehot)
	one_hot_cloudy	 one_hot_rainy   one_hot_sunny
0                0               0               1
1                0               1               0
2                1               0               0
Posted by: Guest on November-12-2020
4

one hot encoding python pandas

y = pd.get_dummies(df.Countries, prefix='Country')
print(y.head())
# from here you can merge it onto your main DF
Posted by: Guest on May-12-2020
-1

how to use one hot encoding in python

from numpy import as np
from sklearn.preprocessing import LabelEncoder
from sklearn.preprocessing import OneHotEncoder

# define example
data = ['cold', 'cold', 'warm', 'cold', 'hot',
        'hot', 'warm', 'cold', 'warm', 'hot']
values = np.array(data)

# first apply label encoding
label_encoder = LabelEncoder()
integer_encoded = label_encoder.fit_transform(values)

# now we can apply one hot encoding
onehot_encoder = OneHotEncoder(sparse=False)
integer_encoded = integer_encoded.reshape(len(integer_encoded), 1)
onehot_encoded = onehot_encoder.fit_transform(integer_encoded)
print(onehot_encoded)
Posted by: Guest on August-14-2021

Code answers related to "how to do one hot encoding in python"

Python Answers by Framework

Browse Popular Code Answers by Language