Answers for "nan in pandas"

9

find nan value in dataframe python

# to mark NaN column as True
df['your column name'].isnull()
Posted by: Guest on May-15-2020
1

represent NaN with pandas in python

import pandas as pd

if pd.isnull(float("Nan")):
  print("Null Value.")
Posted by: Guest on November-11-2020
0

pandas nan values in column

df['your column name'].isnull()
Posted by: Guest on November-04-2020
0

filling the missing data in pandas

note:to fill a specific value

varable = 1
def fill_mod_acc(most_related_coloum_name,missing_data_coloum):
    if np.isnan(missing_data_coloum):
        return varable[most_related_coloum_name]
    else:
        return missing_data_coloum

df['missing_data_coloum'] = df.apply(lambda x:fill_mod_acc(x['most_related_coloum_name'],x['missing_data_coloum']),axis=1)


Note:to fill mean from existing closley related coloum

varable = df.groupby('most_related_coloum_name').mean()['missing_data_coloum']

def fill_mod_acc(most_related_coloum_name,missing_data_coloum):
    if np.isnan(missing_data_coloum):
        return varable[most_related_coloum_name]
    else:
        return missing_data_coloum

df['missing_data_coloum'] = df.apply(lambda x:fill_mod_acc(x['most_related_coloum_name'],x['missing_data_coloum']),axis=1)
Posted by: Guest on May-11-2020
0

nan vs nat pandas

>>> import pandas as pd, datetime, numpy as np
>>> df = pd.DataFrame({'a': [datetime.datetime.now(), np.nan], 'b': [5, np.nan], 'c': [1, 2]})
>>> df
                           a    b  c
0 2019-02-17 18:06:15.231557  5.0  1
1                        NaT  NaN  2
>>> fill_dt = datetime.datetime.now()
>>> fill_value = 4
>>> dt_filled_df = df.select_dtypes('datetime').fillna(fill_dt)
>>> dt_filled_df
                           a
0 2019-02-17 18:06:15.231557
1 2019-02-17 18:06:36.040404
>>> value_filled_df = df.select_dtypes('int').fillna(fill_value)
>>> value_filled_df
   c
0  1
1  2
>>> dt_filled_df.columns = [col + '_notnull' for col in dt_filled_df]
>>> value_filled_df.columns = [col + '_notnull' for col in value_filled_df]
>>> df = df.join(value_filled_df)
>>> df = df.join(dt_filled_df)
>>> df
                           a    b  c  c_notnull                  a_notnull
0 2019-02-17 18:06:15.231557  5.0  1          1 2019-02-17 18:06:15.231557
1                        NaT  NaN  2          2 2019-02-17 18:06:36.040404
Posted by: Guest on September-30-2021

Python Answers by Framework

Browse Popular Code Answers by Language