Answers for "groupby pandas"

2

pandas new df from groupby

df = pd.DataFrame(old_df.groupby(['groupby_attribute'])['mean_attribute'].mean())
df = df.reset_index()
df
Posted by: Guest on August-28-2020
20

group by pandas examples

>>> n_by_state = df.groupby("state")["state"].count()
>>> n_by_state.head(10)
state
AK     16
AL    206
AR    117
AS      2
AZ     48
CA    361
CO     90
CT    240
DC      2
DE     97
Name: last_name, dtype: int64
Posted by: Guest on May-21-2020
1

groupby as_index=false

When you use as_index=False , you indicate to groupby() that you don't want to set the column ID as the index (duh!). ... Using as_index=True allows you to apply a sum over axis=1 without specifying the names of the columns, then summing the value over axis 0.
Posted by: Guest on August-09-2020
8

groupby in pandas

>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0
>>> df.groupby(['Animal']).mean()
        Max Speed
Animal
Falcon      375.0
Parrot       25.0
Posted by: Guest on December-14-2020
2

Groups the DataFrame using the specified columns

# Groups the DataFrame using the specified columns

df.groupBy().avg().collect()
# [Row(avg(age)=3.5)]
sorted(df.groupBy('name').agg({'age': 'mean'}).collect())
# [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)]
sorted(df.groupBy(df.name).avg().collect())
# [Row(name='Alice', avg(age)=2.0), Row(name='Bob', avg(age)=5.0)]
sorted(df.groupBy(['name', df.age]).count().collect())
# [Row(name='Alice', age=2, count=1), Row(name='Bob', age=5, count=1)]
Posted by: Guest on April-08-2020
2

groupby and list

In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
        df

Out[1]: 
   a  b
0  A  1
1  A  2
2  B  5
3  B  5
4  B  4
5  C  6

In [2]: df.groupby('a')['b'].apply(list)
Out[2]: 
a
A       [1, 2]
B    [5, 5, 4]
C          [6]
Name: b, dtype: object

In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
        df1
Out[3]: 
   a        new
0  A     [1, 2]
1  B  [5, 5, 4]
2  C        [6]
Posted by: Guest on February-10-2021

Python Answers by Framework

Browse Popular Code Answers by Language