Answers for "pandas if statement"

6

pandas lambda if else

df['equal_or_lower_than_4?'] = df['set_of_numbers'].apply(lambda x: 'True' if x <= 4 else 'False')
Posted by: Guest on November-17-2020
5

make a condition statement on column pandas

df['color'] = ['red' if x == 'Z' else 'green' for x in df['Set']]
Posted by: Guest on May-12-2020
6

pandas if python

df['new column name'] = df['column name'].apply(lambda x: 'value if condition is met' if x condition else 'value if condition is not met')
Posted by: Guest on January-21-2021
1

pandas if python

import pandas as pd

names = {'First_name': ['Jon','Bill','Maria','Emma']}
df = pd.DataFrame(names,columns=['First_name'])

df.loc[(df['First_name'] == 'Bill') | (df['First_name'] == 'Emma'), 'name_match'] = 'Match'  
df.loc[(df['First_name'] != 'Bill') & (df['First_name'] != 'Emma'), 'name_match'] = 'Mismatch'  

print (df)
Posted by: Guest on February-05-2021
2

if condition dataframe python

df.loc[df['age1'] - df['age2'] > 0, 'diff'] = df['age1'] - df['age2']
Posted by: Guest on May-20-2020
0

if else python pandas dataframe

# create a list of our conditions
conditions = [
    (df['likes_count'] <= 2),
    (df['likes_count'] > 2) & (df['likes_count'] <= 9),
    (df['likes_count'] > 9) & (df['likes_count'] <= 15),
    (df['likes_count'] > 15)
    ]

# create a list of the values we want to assign for each condition
values = ['tier_4', 'tier_3', 'tier_2', 'tier_1']

# create a new column and use np.select to assign values to it using our lists as arguments
df['tier'] = np.select(conditions, values)

# display updated DataFrame
df.head()
Posted by: Guest on October-19-2020

Python Answers by Framework

Browse Popular Code Answers by Language