pca python
import numpy as np
from sklearn.decomposition import PCA
pca = PCA(n_components = 3) # Choose number of components
pca.fit(X) # fit on X_train if train/test split applied
print(pca.explained_variance_ratio_)
pca python
import numpy as np
from sklearn.decomposition import PCA
pca = PCA(n_components = 3) # Choose number of components
pca.fit(X) # fit on X_train if train/test split applied
print(pca.explained_variance_ratio_)
pca python
from sklearn.decomposition import PCA
pca = PCA(n_components=3)
pca.fit(features)
features_pca = pca.transform(features)
print("original shape: ", features.shape)
print("transformed shape:", features_pca.shape)
print(pca.explained_variance_)
print(pca.explained_variance_ratio_)
isinstance in python
x == 1
isinstance(x<3)
#will automatically return true or false
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us