normalize data python
>>> from sklearn import preprocessing
>>>
>>> data = [100, 10, 2, 32, 31, 949]
>>>
>>> preprocessing.normalize([data])
array([[0.10467389, 0.01046739, 0.00209348, 0.03349564, 0.03244891,0.99335519]])
normalize data python
>>> from sklearn import preprocessing
>>>
>>> data = [100, 10, 2, 32, 31, 949]
>>>
>>> preprocessing.normalize([data])
array([[0.10467389, 0.01046739, 0.00209348, 0.03349564, 0.03244891,0.99335519]])
data normalization python
from sklearn import preprocessing
normalizer = preprocessing.Normalizer().fit(X_train)
X_train = normalizer.transform(X_train)
X_test = normalizer.transform(X_test)
Scaling features to a range
# Scaling features to a range using MinMaxScaler
X_train = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
min_max_scaler = preprocessing.MinMaxScaler()
X_train_minmax = min_max_scaler.fit_transform(X_train)
X_train_minmax
# array([[0.5 , 0. , 1. ],
# [1. , 0.5 , 0.33333333],
# [0. , 1. , 0. ]])
X_test = np.array([[-3., -1., 4.]])
X_test_minmax = min_max_scaler.transform(X_test)
X_test_minmax
# array([[-1.5 , 0. , 1.66666667]])
min_max_scaler.scale_
# array([0.5 , 0.5 , 0.33...])
min_max_scaler.min_
# array([0. , 0.5 , 0.33...])
Scaling features to a range
# Scaling features to a range using MaxAbsScaler
X_train = np.array([[ 1., -1., 2.],
[ 2., 0., 0.],
[ 0., 1., -1.]])
max_abs_scaler = preprocessing.MaxAbsScaler()
X_train_maxabs = max_abs_scaler.fit_transform(X_train)
X_train_maxabs
# array([[ 0.5, -1., 1. ],
# [ 1. , 0. , 0. ],
# [ 0. , 1. , -0.5]])
X_test = np.array([[ -3., -1., 4.]])
X_test_maxabs = max_abs_scaler.transform(X_test)
X_test_maxabs
# array([[-1.5, -1. , 2. ]])
max_abs_scaler.scale_
# array([2., 1., 2.])
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us