how to separate numeric and categorical variables in python
df.loc[:,df.dtypes==np.object]
how to separate numeric and categorical variables in python
df.loc[:,df.dtypes==np.object]
transform categorical variables python
from sklearn.preprocessing import LabelEncoder
lb_make = LabelEncoder()
obj_df["make_code"] = lb_make.fit_transform(obj_df["make"])
obj_df[["make", "make_code"]].head(11)
how to convert categorical data to binary data in python
MedInc False
HouseAge False
AveRooms False
AveBedrms False
Population False
AveOccup False
Latitude False
Longitude False
Price False
dtype: bool
how to convert categorical data to numerical data in python
obj_df["body_style"] = obj_df["body_style"].astype('category')
obj_df.dtypes
how to convert categorical data to numerical data in python
import pandas as pd
import numpy as np
# Define the headers since the data does not have any
headers = ["symboling", "normalized_losses", "make", "fuel_type", "aspiration",
"num_doors", "body_style", "drive_wheels", "engine_location",
"wheel_base", "length", "width", "height", "curb_weight",
"engine_type", "num_cylinders", "engine_size", "fuel_system",
"bore", "stroke", "compression_ratio", "horsepower", "peak_rpm",
"city_mpg", "highway_mpg", "price"]
# Read in the CSV file and convert "?" to NaN
df = pd.read_csv("https://archive.ics.uci.edu/ml/machine-learning-databases/autos/imports-85.data",
header=None, names=headers, na_values="?" )
df.head()
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us