dataframe from arrays python
import pandas as pd
df=pd.DataFrame({'col1':vect1,'col2':vect2})
dataframe from arrays python
import pandas as pd
df=pd.DataFrame({'col1':vect1,'col2':vect2})
pandas array of dataframes
import datetime as dt
import numpy as np
import pandas as pd
dates_list = [dt.datetime(2015,11,i+1) for i in range(3)]
month_day_list = [d.strftime("%m%d") for d in dates_list]
dataframe_collection = {} # dictionary to store dataframes - generally better than an array
for month_day in month_day_list: # for each key
# Create/ assign your new data:
new_data = np.random.rand(3,3)
# Store the new data in the dictionary:
dataframe_collection[month_day] = pd.DataFrame(new_data, columns=["one", "two", "three"])
# Neat printing code:
for key in dataframe_collection.keys():
print("n" +"="*40)
print(key)
print("-"*40)
print(dataframe_collection[key])
#The code above prints out the following result:
========================================
1102
----------------------------------------
one two three
0 0.896120 0.742575 0.394026
1 0.414110 0.511570 0.268268
2 0.132031 0.142552 0.074510
========================================
1103
----------------------------------------
one two three
0 0.558303 0.259172 0.373240
1 0.726139 0.283530 0.378284
2 0.776430 0.243089 0.283144
========================================
1101
----------------------------------------
one two three
0 0.849145 0.198028 0.067342
1 0.620820 0.115759 0.809420
2 0.997878 0.884883 0.104158
list dataframe to numpy array
df.values
array([[nan, 0.2, nan],
[nan, nan, 0.5],
[nan, 0.2, 0.5],
[0.1, 0.2, nan],
[0.1, 0.2, 0.5],
[0.1, nan, 0.5],
[0.1, nan, nan]])
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us