how to normalize a 1d numpy array
# Foe 1d array
an_array = np.array([0.1,0.2,0.3,0.4,0.5])
norm = np.linalg.norm(an_array)
normal_array = an_array/norm
print(normal_array)
#[0.2,0.4,0.6,0.8,1] (Should be, I didin't run the code)
how to normalize a 1d numpy array
# Foe 1d array
an_array = np.array([0.1,0.2,0.3,0.4,0.5])
norm = np.linalg.norm(an_array)
normal_array = an_array/norm
print(normal_array)
#[0.2,0.4,0.6,0.8,1] (Should be, I didin't run the code)
javascript array flatten
// flat(depth),
// depth is optional: how deep a nested array structure
// should be flattened.
// default value of depth is 1
const arr1 = [1, 2, [3, 4]];
arr1.flat();
// [1, 2, 3, 4]
const arr2 = [1, 2, [3, 4, [5, 6]]];
arr2.flat();
// [1, 2, 3, 4, [5, 6]]
const arr3 = [1, 2, [3, 4, [5, 6]]];
arr3.flat(2);
// [1, 2, 3, 4, 5, 6]
const arr4 = [1, 2, [3, 4, [5, 6, [7, 8, [9, 10]]]]];
arr4.flat(Infinity);
// [1, 2, 3, 4, 5, 6, 7, 8, 9, 10]
numpy flatten
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
>>> a.flatten('F')
array([1, 3, 2, 4])
flatten image python numpy
x_data = np.array( [np.array(cv2.imread(imagePath[i])) for i in range(len(imagePath))] )
pixels = x_data.flatten().reshape(1000, 12288)
print pixels.shape
flat numpy array
>>> a = np.array([[1,2], [3,4]])
>>> a.flatten()
array([1, 2, 3, 4])
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us