merge two dataframes based on column
df_outer = pd.merge(df1, df2, on='id', how='outer') #here id is common column df_outer
merge two dataframes based on column
df_outer = pd.merge(df1, df2, on='id', how='outer') #here id is common column df_outer
python add multiple columns to pandas dataframe
# Basic syntax: df[['new_column_1_name', 'new_column_2_name']] = pd.DataFrame([[np.nan, 'word']], index=df.index) # Where the columns you're adding have to be pandas dataframes # Example usage: # Define example dataframe: import pandas as pd import numpy as np df = pd.DataFrame({ 'col_1': [0, 1, 2, 3], 'col_2': [4, 5, 6, 7] }) print(df) col_1 col_2 0 0 4 1 1 5 2 2 6 3 3 7 # Add several columns simultaneously: df[['new_col_1', 'new_col_2', 'new_col_3']] = pd.DataFrame([[np.nan, 42, 'wow']], index=df.index) print(df) col_1 col_2 new_col_1 new_col_2 new_col_3 0 0 4 NaN 42 wow 1 1 5 NaN 42 wow 2 2 6 NaN 42 wow 3 3 7 NaN 42 wow # Note, this isn't much more efficient than simply doing three # separate assignments, e.g.: df['new_col_1'] = np.nan df['new_col_2'] = 42 df['new_col_3'] = 'wow'
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us