merge two dataframes based on column
df_outer = pd.merge(df1, df2, on='id', how='outer') #here id is common column
df_outer
merge two dataframes based on column
df_outer = pd.merge(df1, df2, on='id', how='outer') #here id is common column
df_outer
pandas concat two dataframes
# Concating Means putting frames on bottom of one another
# --- ---
# | df1 |
# | df2 |
# Concating => | . |
# | . |
# | dfn |
# --- ---
# Command : pd.concat([df1,df2,...,dfn]) ; df = a dataframe
''':::Eaxmple;::'''
df1 = pd.DataFrame({'A': ['A0', 'A1', 'A2', 'A3'],
'B': ['B0', 'B1', 'B2', 'B3'],
'C': ['C0', 'C1', 'C2', 'C3'],
'D': ['D0', 'D1', 'D2', 'D3']},
index=[0, 1, 2, 3])
df2 = pd.DataFrame({'A': ['A4', 'A5', 'A6', 'A7'],
'B': ['B4', 'B5', 'B6', 'B7'],
'C': ['C4', 'C5', 'C6', 'C7'],
'D': ['D4', 'D5', 'D6', 'D7']},
index=[4, 5, 6, 7])
df3 = pd.DataFrame({'A': ['A8', 'A9', 'A10', 'A11'],
'B': ['B8', 'B9', 'B10', 'B11'],
'C': ['C8', 'C9', 'C10', 'C11'],
'D': ['D8', 'D9', 'D10', 'D11']},
index=[8, 9, 10, 11])
frames = [df1, df2, df3]
result = pd.concat(frames)
# Note : use ignore_index=True if you need it in pd.concat
Copyright © 2021 Codeinu
Forgot your account's password or having trouble logging into your Account? Don't worry, we'll help you to get back your account. Enter your email address and we'll send you a recovery link to reset your password. If you are experiencing problems resetting your password contact us