Answers for "df groupby"

20

group by pandas examples

>>> n_by_state = df.groupby("state")["state"].count()
>>> n_by_state.head(10)
state
AK     16
AL    206
AR    117
AS      2
AZ     48
CA    361
CO     90
CT    240
DC      2
DE     97
Name: last_name, dtype: int64
Posted by: Guest on May-21-2020
8

groupby in pandas

>>> df = pd.DataFrame({'Animal': ['Falcon', 'Falcon',
...                               'Parrot', 'Parrot'],
...                    'Max Speed': [380., 370., 24., 26.]})
>>> df
   Animal  Max Speed
0  Falcon      380.0
1  Falcon      370.0
2  Parrot       24.0
3  Parrot       26.0
>>> df.groupby(['Animal']).mean()
        Max Speed
Animal
Falcon      375.0
Parrot       25.0
Posted by: Guest on December-14-2020
2

groupby and list

In [1]: df = pd.DataFrame( {'a':['A','A','B','B','B','C'], 'b':[1,2,5,5,4,6]})
        df

Out[1]: 
   a  b
0  A  1
1  A  2
2  B  5
3  B  5
4  B  4
5  C  6

In [2]: df.groupby('a')['b'].apply(list)
Out[2]: 
a
A       [1, 2]
B    [5, 5, 4]
C          [6]
Name: b, dtype: object

In [3]: df1 = df.groupby('a')['b'].apply(list).reset_index(name='new')
        df1
Out[3]: 
   a        new
0  A     [1, 2]
1  B  [5, 5, 4]
2  C        [6]
Posted by: Guest on February-10-2021
1

pandas groupby

data.groupby('month', as_index=False).agg({"duration": "sum"})
Posted by: Guest on January-06-2021
0

Pandas groupby

>>> emp.groupby(['dept', 'gender']).agg({'salary':'mean'}).round(-3)
Posted by: Guest on August-09-2021
0

pandas groupby

# usage example
gb = df.groupby(["col1", "col2"])
counts = gb.size().to_frame(name="counts")
count
(
    counts.join(gb.agg({"col3": "mean"}).rename(columns={"col3": "col3_mean"}))
    .join(gb.agg({"col4": "median"}).rename(columns={"col4": "col4_median"}))
    .join(gb.agg({"col4": "min"}).rename(columns={"col4": "col4_min"}))
    .reset_index()
)

# to create dataframe
keys = np.array(
    [
        ["A", "B"],
        ["A", "B"],
        ["A", "B"],
        ["A", "B"],
        ["C", "D"],
        ["C", "D"],
        ["C", "D"],
        ["E", "F"],
        ["E", "F"],
        ["G", "H"],
    ]
)



df = pd.DataFrame(
    np.hstack([keys, np.random.randn(10, 4).round(2)]), columns=["col1", "col2", "col3", "col4", "col5", "col6"]
)
df[["col3", "col4", "col5", "col6"]] = df[["col3", "col4", "col5", "col6"]].astype(float)
Posted by: Guest on October-30-2021

Python Answers by Framework

Browse Popular Code Answers by Language